UHETG Status report

Greg Sullivan/Erik Blaufuss (UMD) FNAL collaboration meeting

Outline

Update on sensitivity studies

Conclusions for Physics Report

TG charge.

- Quantify scientific impact
 - Why make these measurements
 - Expected state of knowledge in 5/10/15 years
- Sensitivity of reference configurations
 - Reference far detector configurations
 - Identify primary backgrounds
- Help make the informed decision for far detector technology.

Scientific impact?

- Reasons for these measurements likely clear many...
 - source of highest energy cosmic rays (potentially AGN, grbs, etc)
 - search for evidence of WIMPs in Sun, Galactic center.
- Precision of these measurements **not** a strong driver at this point
 - Discovery regime need to make sure we have a statistically significant discovery
 - Need good understanding of irreducible backgrounds (atmospheric neutrinos)

State of knowledge in 5/10/15 yr?

- Most sensitive experiments are the operating neutrino telescopes.
 - IceCube at South Pole
 - Giga-ton detector, sensitivity ~> I TeV
 - DeepCore infill detector in IceCube, I5 MT detector, sensitivity ~> 10 GeV.
 - Some ideas being considered as extensions to this
 - Simple: more infilling (~10 MT at ~GeV thresholds or ~70 MT at ~10 GeV)
 - More extreme: Build a I MT ring imaging in-ice detector (~10 MeV thresholds)
 - Antares
 - Similar in size to IceCube DeepCore but in Northern hemisphere
 - Proposed KM3Net extension in Mediterranean (higher energies)
 - In 5-10 yrs: either stricter limits or discoveries to confirm!

Reference configurations

- Reference configurations include several options:
 - 3 @ 100 kT water cherenkov
 - 3 @ 17 kT Liquid Argon detectors
 - 2 WC/ I LAr
 - 2 LAr/ I WC
- Largely ignoring perturbations in proposed designs (pmt density, Gd loading, depth)
 - Assuming all detectors will be able to trigger in response to and reconstruct ~100 MeV muons in detector.

Sensitivity study

- Focus on higher energy neutrinos
 - Simulating 10 GeV 100 PeV muon neutrinos
 - CC interaction muons: long path lengths yields increased sensitivity
 - Higher energy neutrinos have good correlation between neutrino and lepton directions.

• Reduced background from atmospheric neutrinos (that

have a softer spectrum)

Sensitivity study

- Simulated neutrinos using ANIS (All neutrino interaction simulation) tool
 - Simulates neutrino flux from earth surface thru detector volume, including CC and NC interactions
 - Events are weighted relative to total neutrino interaction probability.
- Leptons (muons) produced in CC interactions are propagated² thru detector volume region.
- (I) Comput. Phys. Commun. 172 (2005) 203-213 (arXiv: astro-ph/0406439)
 - (2) Muon Monte Carlo (MMC) tool ->arXiv: hep-ph/0407075v2

Sensitivity study

- Made simple, basic assumptions about detectors
 - Simplified detector volumes (spheres) and counted any event with ~100 MeV muon in detector volume
 - Detector simulations are still a work in progress at this point
 - Over-estimates the cross sectional area by ~10-20%.
- Events "detected" if pass thru volume.
 - Event count from a particular source is not everything:
 - Backgrounds (atm neutrinos) are a uniform background you must overcome.
 - Several handles (different spectra, time coincidences, etc) allow for separation of signal to background.
 - Require more detailed studies with fuller MC.
 - Study good for ~factor of 2-3 in estimated event rates.
- Neutrino effective area, can be convolved with any flux to get event rate:

$$N_D = \int dt \int d\Omega \int dE \, \Phi_{\nu}(t, \Omega, E) \, A_{eff}(\Omega, E) \, .$$

Sanity check

- Applied same simulation to an IceCube like detector (sphere r=500m, muon threshold 20 GeV)
 - Neutrino effective area obtained is very comparable to current sensitivities
 - Event rates from sources for this detector also calculated.
 Reasonable agreement with existing IC40/IC59 IceCube analyses.

Effective areas for WC and LAr

- WC model
 - Sphere
 - R = 28.8m
 - 100kt
 - $A = 2600 \text{ m}^2$
 - Emin = 100 MeV
- LAr model
 - R= 14.2 m
 - 17kt
 - $A = 630 \text{ m}^2$
 - Emin = 100 MeV

Potential sources studied

- (I) E⁻² point source in northern hemisphere.
 - At current sensitivity of ANTARES:
 - $dN/dE = 5x10^{-8} \text{ GeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1}$

Potential sources studied

• (2) WB-like spectrum from ~150 visible GRB year

Neutrino fluence based on average burst x-ray spectra

Predicted event rats

 Convolved fluxes with Aeff and obtained total events expected.

Events/yr	(I) Point src	(2) I50 GRB
I00kt WC	0.7	0.07
I7 kt WC	0.2	0.02
Toy IceCube	214	18

Multiply by N detector to get total event rates

Events from a E⁻² Point source

Mean energy ~10 TeV

Cross checks...

- Roxanne G. has been investigating LAr sensitivity with GLoBES
- Preliminary
 results agree with
 other study to
 within factor of 3.

Future...

- Certainly not the perfect study, but should set scale for neutrino astronomy possible with LBNE far detector
- Other investigations require more detailed study
 - Any "contained" event signal needs to relatively strong and or very "bursty" be identifiable over irreducible atm neutrino background.
 - Include backgrounds from atm neutrino and atm muons in sensitivity studies.

Physics Report conclusions

- Neither 100-300 kton of WC or 17-51 kton of LAr are optimal detectors for UHE neutrino signals
 - Neither very competitive with current/planned generations of neutrino observatories.
- Slight advantage for WC based on size, but hardly enough to make it competitive.
- Certainly would encourage more study and searches, especially for transient events where time correlations could increase sensitivity.
- Pursuing these studies is definitely encouraged
 - Searches at the "edge" of sensitivity require understanding the irreducible background of atm neutrinos to high precision
 - Excellent learning opportunity for students

What's next?

- Plans to merge the UHE Neutrino TG into the Atm neutrino group.
 - Very limited manpower and limited participation in this TG to date.
- Interest will likely pickup once there is data to look at....
- Look forward to working with Hugh going forward.